$\mathrm{Pd}_{59}(\mathbf{C O})_{32}\left(\mathrm{PMe}_{3}\right)_{21}$: A Nanosized Metal Cluster Containing a Trigonal $D_{3} \mathrm{Pd}_{59}$ Core with 11 Interior Palladium Atoms

Nguyet T. Tran, Masaki Kawano, Douglas R. Powell, and Lawrence F. Dahl*

Department of Chemistry
University of Wisconsin-Madison Madison, Wisconsin 53706

Received August 3, 1998
The group 10 metals ($\mathrm{Ni}, \mathrm{Pd}, \mathrm{Pt}$) are particularly attractive candidates for obtaining giant metal carbonyl clusters because clusters containing these electron-rich metals may be stabilized with relatively few ligands so that all of them can be sterically accommodated on the metal-core surface. ${ }^{1}$ Extensive chemical/ physical studies have been performed on nickel and platinum carbonyl clusters, ${ }^{1,2}$ and clusters containing up to 50 metal atoms have been isolated and crystallographically characterized. ${ }^{3}$ In sharp contrast, relatively few investigations involving palladium carbonyl clusters have been carried out, partly because palladium, per se, does not form discrete, pure carbonyl clusters. ${ }^{2,4}$ Nevertheless, over the past 15 years a variety of high-nuclearity neutral homopalladium carbonyl phosphine clusters have been prepared by Mednikov and co-workers ${ }^{5}$ and characterized by Slovokhotov and Struchkov ${ }^{5}$ from X-ray crystallography. Analyses of the stereochemistry and prominent bonding features of several of these clusters have been presented. ${ }^{6}$ Moreover, N,O-ligated palladium nanoclusters possessing idealized formulations based upon concentric closed-shell palladium cores have been reported, namely, 5-shell Pd_{561} clusters by Moiseev and co-workers ${ }^{7}$ and by Schmid et al. ${ }^{8}$ and mixtures of 7 -shell Pd_{1415} and 8 -shell Pd_{2057} clusters by Schmid et al. ${ }^{9,10}$ Chaudret, Bradley, and co-workers ${ }^{11}$ recently

[^0]showed that zero-valent Pd (and likewise Pt) complexes in organic solutions (e.g., THF) decomposed under CO in the presence of PPh_{3} to give novel $\mathrm{PPh}_{3} / \mathrm{CO}$-stabilized Pd (and Pt) particles which were studied by spectroscopic methods; although the Pd particles were much less stable than the Pt particles and were subject to size variations in solution, three distinct size-selected distributions were obtained with observed mean diameters determined from TEM to correspond to idealized 2-shell $\mathrm{Pd}_{55}, 3$-shell Pd_{147}, and 5-shell Pd_{561} cores. ${ }^{11}$

Herein we present the preparation, isolation, and structural determination of the $\mathrm{Pd}_{59}(\mathrm{CO})_{32}\left(\mathrm{PMe}_{3}\right)_{21}$ cluster (1). This welldefined neutral cluster has particular significance in that it possesses the largest crystallographically determined metal-atom core with direct metal-metal bonding reported to date for a discrete metal-ligated species. Furthermore, $\mathbf{1}$ contains a nanosized metal core with 11 interior atoms. The ellipsoidal-shaped architecture of its Pd_{59} core may be formally considered as a trigonal deformation of a spheroidal-like geometry possessed by the similar-sized full-shell Au_{55} core (presumed to be cuboctahedral) of ca. 1.2 nm diameter in the prototype Schmid $\mathrm{Au}_{55}\left(\mathrm{PPh}_{3}\right)_{12} \mathrm{Cl}_{6}$ nanocluster. ${ }^{8,10,12}$

1 was obtained in moderate yields (ca. 40%) from a highly reproducible synthesis involving the initial preparation of a heterometallic $\mathrm{Pd}-\mathrm{Ni}$ carbonyl cluster (without phosphine ligands) followed by its reaction with PMe_{3} under acidic conditions. Although it was presumed that the latter reaction would result in PMe_{3} substitution for CO ligands and/or other large $\mathrm{Pd}-\mathrm{Ni}$ carbonyl clusters via phosphine stabilization, the reaction instead gave rise to several new high-nuclearity homopalladium clusters with 1 as the major product. ${ }^{13,14}$

Its crystal structure ${ }^{15}$ was unambiguously determined by X-ray diffraction involving the use of a SMART CCD area detector diffractometry system. The composition of $\mathbf{1}$ established by the X-ray structural determination is completely consistent with an elemental analysis. ${ }^{16}$ This compound was also characterized by IR and ${ }^{31} \mathrm{P}\{\mathrm{H}\},{ }^{1} \mathrm{H}$ NMR measurements. ${ }^{17}$
1 has crystallographic D_{3} (32) site symmetry such that the asymmetric part consists of $1 / 6$ of the neutral molecule. Its 59atom metal framework (Figure 1) may be conceptually constructed in the following fashion. Two outer centered icosahedra are indirectly connected via trans double face-sharing with an inner face-shared bioctahedron. The 11 interior $\mathrm{Pd}(\mathrm{i})$ atoms comprise the bicapped face-sharing bioctahedron. The principal 3-fold axis passes through the two icosahedral-centered $\operatorname{Pd}(5), \operatorname{Pd}(5 A)$ atoms and the midpoints of the three perpendicular face-fused triangles interconnecting the two icosahedra and two octahedra with one another. Each of the two icosahedra is further condensed via face-sharing with 6 other octahedra and three square pyramids. ${ }^{18}$ Three additional 3 -fold-related octahedra, each lying on a horizontal 2 -fold axis that passes through two vertexes, are each

[^1]

Figure 1. Geometry of the ellipsoidal-shaped Pd_{59} core in $\mathbf{1}$ which has crystallographic D_{3} site symmetry. The maximum core diameter of ca. 1.3 nm along the principal 3 -fold axis arises from trans double facesharing of an inner face-fused $\operatorname{Pd}(\mathrm{i})_{9}$ bioctahedron with two outer $\operatorname{Pd}(\mathrm{i})$ centered icosahedra (outlined with wider line-connectivities). The core diameter along each of the three horizontal 2-fold axes, one of which passes through $\mathrm{Pd}(9)$ (and its attached $\left.\mathrm{PMe}_{3}\right), \mathrm{Pd}(6)$, and a 3-fold-related Pd atom of the Pd_{10}-capped $\mathrm{Pd}(12)$, is ca. 0.9 nm .
connected indirectly to both icosahedra via face-fusion of two of its 2-fold-related faces with two intermediate octahedra that in turn are each face-fused with an icosahedron. The metal core is completed by three capping atoms (viz., $\operatorname{Pd}(12)$, and its two 3 -fold-related atoms), each located on a 2 -fold axis and each connected to 10 Pd atoms that are disposed in a hemisphericallike array. Hence, the entire metal core of $\mathbf{1}$ can be formally derived from a specific face-sharing condensation of two icosahedra, 17 octahedra, and six square pyramids involving 56 Pd atoms that are additionally linked by three Pd_{10}-capped Pd atoms. It is apparent that the growth pattern of the metal framework in 1, involving face-fused condensations of centered icosahedral units with other polyhedra, is entirely different from the growth sequence of a series of centered icosahedral units as vertex-sharing polyicosahedra formulated by Teo, Zhang, and co-workers ${ }^{18}$ on the basis of comprehensive stereophysical studies of their remarkable $\mathrm{Au}-\mathrm{Ag}$ and $\mathrm{Au}-\mathrm{Ag}-\mathrm{M}(\mathrm{M}=\mathrm{Ni}, \mathrm{Pd}, \mathrm{Pt})$ clusters.

The palladium framework is stabilized by 32 bridging CO and

[^2](14) Bacon, J. W.; Dahl, L. F. unpublished research.
$21 \mathrm{PMe}_{3}$ ligands. The trimethyl phosphine ligands are distributed about the metal core as $6 \mathrm{Pd}\left(\mu_{3}-\mathrm{CO}\right)_{2} \mathrm{PMe}_{3}, 9 \mathrm{Pd}\left(\mu_{2}-\mathrm{CO}\right)_{2} \mathrm{PMe}_{3}$, and $6 \mathrm{Pd}\left(\mu_{3}-\mathrm{CO}\right) \mathrm{PMe}_{3}$ moieties.
Application of the analogous electron-counting procedures by Mingos ${ }^{19}$ and by Teo/Zhang ${ }^{20}$ for a condensed polyhedron (supracluster) gives the same calculated cluster valence electron (CVE) count ${ }^{21}$ of 696 which is in exact accordance with the observed number of CVEs (i.e., $59 \times 10(\mathrm{Pd})+32 \times 2(\mathrm{CO})+$ $\left.21 \times 2\left(\mathrm{PMe}_{3}\right)=696\right)$. This agreement is consistent with the ${ }^{1} \mathrm{H}$ NMR measurements which showed no detectable high-field signals characteristic of hydride-like atoms.

Planned investigations include variable-temperature measurements of the magnetic moment and specific heat properties of the Pd_{59} cluster for comparison with the corresponding sizedependent properties reported (and attributed to quantum-size effects) for the $\mathrm{Pd}_{561}, \mathrm{Pd}_{1415}, \mathrm{Pd}_{2057}$ full-shell clusters and Pd (colloid) particles. ${ }^{22}$

Acknowledgment. This research was supported by NSF (Grants CHE-9310428 and CHE-9729555).

Supporting Information Available: Figures of the metal-core and molecular geometry of $\mathbf{1}$ with anisotropic displacement ellipsoids along with crystallographic data (24 pgs). See any current masthead page for ordering information and Web access instructions.

JA9827346

(15) $\left[\mathrm{Pd}_{59}(\mathrm{CO})_{32}\left(\mathrm{PMe}_{3}\right)_{21}\right] \cdot 3\left(\mathrm{Me}_{2} \mathrm{CO}\right) \cdot 1.5\left(i-\mathrm{Pr}_{2} \mathrm{O}\right)$: trigonal, $P \overline{3} 12 / c, a=$ $b=22.7815(3) \AA, c=28.0363(4) \AA, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}, V=12601.3-$ (3) $\AA^{3}, Z=2, \mathrm{~d}_{\text {calcd }}=2.398 \mathrm{Mg} / \mathrm{m}^{3}$. Sphere of 26966 data collected at $133-$ (2) K via 0.3ω scans over a 2θ range $4.12-50.00^{\circ}$; empirical absorption correction applied to data. Anisotropic least-squares refinement (409 parameters/ 142 restraints) on 7135 independent merged reflections ($R_{\mathrm{int}}=0.0986$) converged at $\omega R_{2}\left(F^{2}\right)=0.1455$ for all data; $R_{1}(F)=0.0546$ for 4120 observed data $(I>2 \sigma(I))$. The highest positive residual peak on the final (original) difference map was interpreted on the basis of reasonable distances to involve the partial occupancy of an additional Pd atom in the asymmetric unit in place of one bridging CO ligand. The resulting least-squares refined occupancy factors of $\alpha=0.04$ for the presumed extra independent $\operatorname{Pd}(13)$ atom and $1-$ $\alpha=0.96$ for the independent bridging CO ligand indicate the presence of a superimposed cocrystallized $\mathrm{Pd}_{65}(\mathrm{CO})_{26+x}\left(\mathrm{PMe}_{3}\right)_{21}$ cluster of D_{3} (32) site symmetry occupying 4% of the unit cells. The x COs attached to $\operatorname{Pd}(13)$ and the other five symmetry-related Pd atoms were expectedly not detected on subsequent difference maps due to their much smaller X-ray scattering powers. Because the occupancy factor was only 4% for $\mathrm{Pd}(13)$, we regard the presumed superimposed cocrystallized Pd_{65} cluster as a small impurity that can be neglected in this reported crystal structure. Restraints were applied to only the solvent molecules and the independent PMe_{3} group lying on a 2 -fold axis.
(16) Anal. by Desert Analytics (Tucson, AZ): Calcd for $\left[\mathrm{Pd}_{59}(\mathrm{CO})_{32}\left(\mathrm{PMe}_{3}\right)_{21}\right]$. $3\left(\mathrm{Me}_{2} \mathrm{CO}\right) \cdot 1.5\left(i-\mathrm{Pr}_{2} \mathrm{O}\right) \cdot 2\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)(\mathrm{fw}=9271.32)$. Calcd (found) Pd, 67.72 (67.59); Ni, 0.00 (0.16); C, 16.19 (16.29); H, 2.79 (2.80).
(17) IR (THF, CaF_{2}) $v(\mathrm{CO})$: 1848 (br), 1820 (sh), 1739 (w), and 1653 (w) $\mathrm{cm}^{-1} \cdot{ }^{31} \mathrm{P}\{\mathrm{H}\} \mathrm{NMR}\left(202.3 \mathrm{MHz}, \mathrm{THF}-d_{8}\right.$ at $23{ }^{\circ} \mathrm{C}$ and $-60{ }^{\circ} \mathrm{C}, 85 \%$ $\mathrm{H}_{3} \mathrm{PO}_{4}$ external: $31.30 \mathrm{ppm} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{THF}-d_{8}\right.$ at $\left.23{ }^{\circ} \mathrm{C}\right)$: two doublets at $1.34\left({ }^{2} J_{\mathrm{P}-\mathrm{H}}=12.91 \mathrm{~Hz}\right)$ assigned to PMe_{3} and $0.10 \mathrm{ppm}\left({ }^{2} J_{\mathrm{P}-\mathrm{H}}\right.$ $=9.30 \mathrm{~Hz})$ due to unknown species. No signals due to hydrido-like protons from 9.0 to -30.0 ppm . All other proton signals assigned to solvent.
(18) (a) Teo, B. K.; Zhang, H.; Shi, X. J. Am. Chem. Soc. 1990, 112, 8552. (b) Teo, B. K.; Zhang, H. Coord. Chem. Rev. 1995, 143, 611. (c) Zhang, H.; Teo, B. K. Inorg. Chim. Acta 1997, 265, 213.
(19) (a) Mingos, D. M. P. J. Chem. Soc., Chem. Commun. 1983, 706. (b) Mingos, D. M. P. Acc. Chem. Res. 1984, 17, 311. (c) Mingos, D. M. P.; Johnson, R. L. J. Organomet. Chem. 1985, 280, 419.
(20) (a) Teo, B. K.; Zhang, H. Inorg. Chim. Acta 1988, 144, 173. (b) Teo, B. K.; Zhang, H. Polyhedron 1990, 9, 1985.
(21) Each of the two identical halves of the 59 -atom metal core (Figure 1) in $\mathbf{1}$ consists of an interior tetrahedron of $4 \mathrm{Pd}(\mathrm{i}) \mathrm{s}$ (viz., the icosahedra-centered $\operatorname{Pd}(5), \operatorname{Pd}(1)$, and the two 3 -fold-related $\operatorname{Pd}(1 \mathrm{~A}), \operatorname{Pd}(1 \mathrm{~B}))$ surrounded by 27 surface atoms (i.e., $\operatorname{Pd}(9), \operatorname{Pd}(9 \mathrm{~A})$, and $\mathrm{Pd}(9 \mathrm{~B})$ are excluded). The resulting electron count for each half given by $\Delta_{i}+12 n_{\mathrm{s}}$ is 384 , where $\Delta_{\mathrm{i}}=60$ (for the $\operatorname{Pd}(\mathrm{i})_{4}$ tetrahedron) and $n_{\mathrm{s}}=27$. The two halves condense by the facesharing of a common $v_{2} \mathrm{Pd}_{6}$ triangle (90 CVEs). Because $\mathrm{Pd}(9), \mathrm{Pd}(9 \mathrm{~A})$, and $\mathrm{Pd}(9 \mathrm{~B})$ are each the apical atom of a square pyramid (74 CVEs), the entire condensed metal core of $\mathbf{1}$ can then be formally completed via double edgesharing of the above formed 56 -atom polyhedron with the basal atoms of three square pyramids (i.e., exclusion of the sixth atom in each octahedron to give a square pyramid simplifies this bonding scheme but does not alter the resulting electron count). The total predicted electron count for these condensations is $2 \times 384-90+3 \times 74-3(2 \times 34)=696$.
(22) (a) de Jongh, L. J. Applied Organometallic Chemistry 1998, 12, 393 and references therein. (b) Volokitin, Y.; Sinzig, J.; de Jongh, L. J.; Schmid, G.; Vargaftik, M. N.; Moiseev, I. I. Nature 1996, 384, 621.

[^0]: (1) Chini, P. Gazz. Chim. Ital. 1979, 109, 225.
 (2) (a) Longoni, G.; Iapalucci, M. C. In Clusters and Colloids: From Theory to Applications; Schmid, G., Ed.; VCH Publishers: Inc.; New York, 1994; pp 91-177 and references therein. (b) Ceriotti, A.; Pergola, R. D.; Garlaschelli, L. In Physics and Chemistry of Metal Cluster Compounds; de Jongh, L. J., Ed.; Kluwer Academic Publishers: The Netherlands, 1994; Chapter 2, pp 41-106 and references therein. (c) Kharas, K. C. C.; Dahl, L. F. Adv. Chem. Phys. 1988, 70 (part 2), 1-43 and references therein.
 (3) (a) $\left[\mathrm{HNi}_{34} \mathrm{C}_{4}(\mathrm{CO})_{38}\right]^{5-}$; $\left[\mathrm{Ni}_{35}(\mathrm{CO})_{39} \mathrm{C}_{4}\right]^{6-}$: Ceriotti, A.; Fait, A.; Longoni, G.; Piro, G.; Resconi, L.; Demartin, F.; Manassero, M.; Masciocchi, N.; Sansoni, M. J. Am. Chem. Soc. 1986, 108, 5370. (b) $\left[\mathrm{HNi}_{38}(\mathrm{CO})_{42} \mathrm{C}_{6}\right]^{5-}$: Ceriotti, A.; Fait, A.; Longoni, G.; Piro, G.; Demartin, F.; Manassero, M.; Masciocchi, N.; Sansoni, M. J. Am. Chem. Soc. 1986, 108, 8091. (c) $\left[\mathrm{H}_{2} \mathrm{Ni}_{38} \mathrm{Pt}_{6}(\mathrm{CO})_{48}\right]^{4-}$; $\left[\mathrm{HNi}_{38} \mathrm{Pt}_{6}(\mathrm{CO})_{44}\right]^{5-}$: Ceriotti, A.; Demartin, F.; Longoni, G.; Manassero, M.; Maichionna, M.; Piva, G.; Sansoni, M. Angew. Chem., Int. Ed. Engl. 1985, 24, 697. (d) $\left[\mathrm{Ni}_{38} \mathrm{Pt}_{6}(\mathrm{CO})_{44}\right]^{6-}$: Bemis, J. M.; Dahl, L. F., unpublished research. (e) $\left[\mathrm{Pt}_{44}(\mathrm{CO})_{47}\right]^{4-}$; $\left[\mathrm{Pt}_{50}(\mathrm{CO})_{48}\right]^{4-}$: Lewis, G. J.; Hayashi, R. K.; Dahl, L. F., unpublished research (see: p 6166, in Roth, J. D.; Lewis, G. J.; Safford, L. K.; Jiang, X.; Dahl, L. F.; Weaver, M. J. J. Am. Chem. Soc. 1992, 114, 6159).
 (4) Weber, L. Angew. Chem., Int. Ed. Engl. 1994, 33, 1077.
 (5) (a) $\mathrm{Pd}_{10}(\mathrm{CO})_{14}\left(\mathrm{PBu}_{3}\right)_{4}$: Mednikov, E. G.; Eremenko, N. K.; Slovokhotov, Yu. L.; Struchkov, Yu. T. J. Organomet. Chem. 1983, 258, 247. (b) $\operatorname{Pd}_{10^{-}}$ (CO) ${ }_{12}\left(\mathrm{PBu}_{3}\right)_{6}:$ Mednikov, E. G.; Eremenko, N. K.; Gubin, S. P.; Slovokhotov, Yu. L.; Struchkov, Yu. T. J. Organomet. Chem. 1982, 239, 401. (c) $\operatorname{Pd}_{13}\left(\mu_{2}-\right.$ $\left.\mathrm{PdPEt}_{3}\right)_{3}(\mathrm{CO})_{13}\left(\mathrm{PEt}_{3}\right)_{6}$: Mednikov, E. G.; Slovokhotov, Yu L.; Struchkov, Yu T. Organomet. Chem. (USSR) (Engl. Trans.) 1991, 4(1), 65. (d) $\mathrm{Pd}_{23}(\mathrm{CO})_{22}-$ $\left(\mathrm{PEt}_{3}\right)_{10}$: Mednikov, E. G.; Eremenko, N. K.; Slovokhotov, Yu. L.; Struchkov, Yu. T. J. Organomet. Chem. 1986, 301, C35. (e) $\mathrm{Pd}_{23}(\mathrm{CO})_{20}\left(\mathrm{PEt}_{3}\right)_{8}$: Mednikov, E. G.; Eremenko, N. K.; Slovokhotov, Yu. L.; Struchkov, Yu. T. Zh. Vses. Khim. Ova im. D. I. Mendeleeva 1987, 32, 101 (in Russian). (f) $\mathrm{Pd}_{34}(\mathrm{CO})_{24^{-}}$ $\left(\mathrm{PEt}_{3}\right)_{12}$ Mednikov, E. G.; Kanteeva, N. I. Russ. Chem. Bull. 1995, 44(1), 163. (g) $\mathrm{Pd}_{38}(\mathrm{CO})_{28}\left(\mathrm{PEt}_{3}\right)_{12}$: Mednikov, E. G.; Eremenko, N. K.; Slovokhotov, Yu. L.; Struchkov, Yu. T. J. Chem. Soc., Chem. Commun. 1987, 218.
 (6) (a) Eremenko, N. K.; Gubin, S. P. Pure Appl. Chem. 1990, 62, 1179. (b) Burrows, A. D.; Mingos, D. M. P. Transition Met. Chem. 1993, 18, 129. (c) King, R. B. Gazz. Chim. Ital. 1992, 122, 383.
 (7) Moiseev, I. I.; Vargaftik, M. N.; Volkov, V. V.; Tsirkov, G. A.; Cherkashina, N. V.; Novotortsev, V. M.; Ellert, O. G.; Petrunenko, I. A.; Chuvilin, A. L.; Kvit, A. W. Mendeleev Commun. 1995, 87 and references therein.

[^1]: (8) (a) Schmid, G. Polyhedron 1988, 7, 2321. (b) Schmid, G. Chem. Rev. 1992, 92, 1709. (c) Schmid, G. In Physics and Chemistry of Metal Cluster Compounds; de Jongh, L. J., Ed.; Kluwer Academic Publishers: The Netherlands, 1994; Chapter 3, pp 107-134 and references therein. (d) Schmid, G. In Clusters and Colloids: From Theory to Applications; Schmid, G., Ed.; VCH Publishers: Inc.: New York, 1994; pp 178-211 and references therein.
 (9) Schmid, G.; Harms, M.; Malm, J.-O.; Bovin, J.-O.; Ruitenbeck, J. van; Zandbergen, H. W.; Fu, W. T. J. Am. Chem. Soc. 1993, 115, 2046.
 (10) These ligand-stabilized non-carbonyl clusters are members of a series of idealized spherically shaped nanocluster molecules denoted as full-shell clusters.
 (11) Amiens, C.; de Caro, D.; Chaudret, B.; Bradley, J. S.; Mazel, R.; Roucau, C. J. Am. Chem. Soc. 1993, 115, 11638.
 (12) (a) Schmid, G.; Pfeil, R.; Boese, R.; Bandermann, F.; Meyer, S.; Calis, G. H. M.; van der Velden, J. W. A. Chem. Ber. 1981, 114, 3634. (b) Schmid, G. Struct. Bonding (Berlin) 1985, 62, 51. (c) Fairbanks, M. C.; Benfield, R. E.; Newport, R. J.; Schmid, G. Solid State Commun. 1990, 73, 431. (d) Marcus, M. A.; Andrews, M. P.; Zegenhagen, J.; Bommannavar, A. S.; Montano, P. Phys. Rev. 1990, B42, 3312.

[^2]: (13) (a) Preparation of heterometallic $\mathrm{Pd}-\mathrm{Ni}$ carbonyl precursor (5): In a typical reaction, $\mathrm{Pd}(\mathrm{OAc})_{2}(0.40 \mathrm{~g}, 1.80 \mathrm{mmol})$ dissolved in 15 mL of DMSO was added dropwise under a N_{2} atmosphere at rt to a stirred solution of $\left[\mathrm{Me}_{4} \mathrm{~N}_{2}\left[\mathrm{Ni}_{6}(\mathrm{CO})_{12}\right](0.75 \mathrm{~g}, 0.90 \mathrm{mmol})\right.$ in 30 mL of DMSO containing pellets of $\mathrm{NaOH}(\sim 0.2 \mathrm{~g})$. The solution quickly changed from a cherry-red to a darkbrown color. After $5 \mathrm{~h}, \mathrm{NaOH}$ pellets were removed by a solution transfer to another flask, and a solution of $\mathrm{Ph}_{4} \mathrm{PBr}(7.5 \mathrm{~g})$ in 20 mL of MeOH was added. Slow addition of distilled, degassed water to the ice-cooled solution resulted in a dark-brown precipitate which was filtered and washed several times with degassed water, methanol, and then exclusively with THF. A subsequent acetone extract from the solid gave 0.60 g of $\mathbf{5}$. An IR spectrum (MeCN) exhibited CO bands at 1874 (s), 2010 (s) cm^{-1}. The $\mathrm{Pd}-\mathrm{Ni}$ anion of 5 possesses a 30 -atom $c c p$ metal-core geometry that conforms to an edgetruncated v_{4} tetrahedron; its tentative formulation as $\left[\mathrm{PPh}_{4}\right]_{4}\left[\mathrm{Pd}_{30-x} \mathrm{Ni}_{x}(\mathrm{CO})_{y}\right]$. solvent ($x \approx 14 ; y \approx 36$) is based upon a partial crystal structure (i.e., poor X-ray data), elemental analysis, and IR. ${ }^{14}$ Extensive efforts to crystallize this compound again are as yet unsuccessful. (b) Preparation of $\mathbf{1}$ and other products $(\mathbf{2}, \mathbf{3}, \mathbf{4})$: In a typical reaction, 10 mL of deoxygenated acetic acid was added to 0.60 g of 5 in 30 mL of $\mathrm{CH}_{3} \mathrm{CN}$, after which $250 \mu \mathrm{~L}$ of PMe_{3} dissolved in 10 mL of acetonitrile was added dropwise to the mixture. The reaction was stirred at rt for 3 days. The resulting precipitate was separated and washed with $\mathrm{CH}_{3} \mathrm{CN}$. An extraction with THF gave 0.05 g of a dark-brown compound characterized as $\mathrm{Pd}_{35}(\mathrm{CO})_{23}\left(\mathrm{PMe}_{3}\right)_{15}$. (3). No residue remained after this extraction. The filtrate from the reaction was dried in vacuo to give a darkbrown solid which was extracted with MeOH and then with THF. This THF extract gave 0.05 g of a dark-brown compound characterized as $\mathrm{Pd}_{16}(\mathrm{CO})_{13-}$ $\left(\mathrm{PMe}_{3}\right)_{9}$ (4). The MeOH extract was dried under a N_{2} flow, washed with degassed water, and extracted first by diisopropyl ether and then by THF. $\mathrm{Pd}_{59}(\mathrm{CO})_{32}\left(\mathrm{PMe}_{3}\right)_{21}(\mathbf{1})(0.11 \mathrm{~g})$, and $\mathrm{Pd}_{39}(\mathrm{CO})_{23}\left(\mathrm{PMe}_{3}\right)_{16}(\mathbf{2})(0.08 \mathrm{~g})$ were obtained from the diisopropyl ether and THF extracts, respectively. Estimated yields based on $\mathrm{Pd}(\mathrm{OAc})_{2}$ are 40% for 1, 27\% for 2, 15% for $\mathbf{3}$, and 16% for 4.

